Three of the following questions will serve as problems on the final exam:

- 1. Formulate the definition of $\lim_{n \to \infty} a_n$
- 2. Formulate the definition of $\lim_{x \to a} f(x)$
- 3. Prove that if $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
- 4. Formulate the squeeze theorem for sequences.
- 5. Formulate the monotonic sequence theorem.
- 6. Write the formula for the sum of geometric series.
- 7. Prove that if the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.
- 8. Formulate the test for divergence.
- 9. Formulate the integral test.
- 10. Formulate the p-test.
- 11. Formulate the comparison test.
- 12. Formulate the limit comparison test.
- 13. Formulate the alternating series test.
- 14. Prove that if a series is absolutely convergent, then it is convergent.
- 15. Formulate the ratio test.
- 16. Write the Taylor formula.
- 17. Write the Maclaurin series for e^x .
- 18. Write the Maclaurin series for $\sin x$.
- 19. Write the Maclaurin series for $\cos x$.
- 20. Write the Maclaurin series for $\ln(1+x)$.
- 21. Given vector $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$, what is its magnitude?

- 22. Let θ be the angle between vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$. What is $\vec{\mathbf{a}} \circ \vec{\mathbf{b}}$?
- 23. Let $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$, $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$. Write the formula for $\vec{\mathbf{a}} \circ \vec{\mathbf{b}}$ in terms of $a_1, a_2, a_3, b_1, b_2, b_3$.
- 24. Given vector $\vec{\mathbf{a}}$, find the unit vector $\vec{\mathbf{u}}$ having the same direction.
- 25. Write the formula for the scalar projection of $\vec{\mathbf{a}}$ onto $\vec{\mathbf{b}}$.
- 26. Write the formula for the vector projection of $\vec{\mathbf{a}}$ onto $\vec{\mathbf{b}}$.
- 27. Let θ be the angle between vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$. What is $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$?
- 28. Let $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$, $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$. Write the formula for $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ in terms of $a_1, a_2, a_3, b_1, b_2, b_3$.
- 29. What is the scalar triple product of vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, and $\vec{\mathbf{c}}$?
- 30. Let $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$, $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, $\vec{\mathbf{c}} = \langle c_1, c_2, c_3 \rangle$. Write the formula for the scalar triple product of these vectors.
- 31. Write the formula for the area of the parallelogram formed by vectors \vec{a}, \vec{b} .
- 32. Write the formula for the volume of the parallelepiped formed by vectors \vec{a} , \vec{b} , \vec{c} .
- 33. Write the equation of the line with directional vector v, going through point P(x₀, y₀, z₀):
 (a) in vector form
 (b) in parametric form
 (c) in symmetric form.
- 34. Write the equation of the plane with normal vector n going through point P(x₀, y₀, z₀):
 (a) in vector form
 (b) in scalar form.
- 35. Write the equation of tangent line to the curve $\vec{\mathbf{r}}(t)$ at point $P(x_0, y_0, z_0)$.
- 36. Write the formula for the length of curve $\vec{\mathbf{r}}(t)$ if $a \leq t \leq b$.
- 37. Let $\vec{\mathbf{r}}(t)$ be the position vector of a particle. Write the formula for its velocity $\vec{\mathbf{v}}(t)$ and acceleration $\vec{\mathbf{a}}(t)$.

- 38. Let $\vec{\mathbf{v}}(t)$ be the velocity of a particle. Write the formula for its position vector $\vec{\mathbf{r}}(t)$ if at time t_0 the particle was located at point P with radius-vector $\vec{\mathbf{r}}_0$.
- 39. What is the definition of $f_x(x, y)$?
- 40. Formulate the Clairaut Theorem (about mixed derivatives).
- 41. Write the definition of a differentiable function of two variables.
- 42. What is the differential of function f(x, y)?
- 43. Given surface $\vec{\mathbf{r}}(u, v)$, what is the normal vector to the tangent plane?
- 44. What is the equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$?
- 45. Given surface z = f(x, y), what is the normal vector to the tangent plane?
- 46. Write the formula for $\frac{df}{dt}$ (Chain rule) for function f(x, y) if x = x(t), y = y(t).
- 47. Write the formula for $\frac{\partial f}{\partial u}$ (Chain rule) for function f(x, y) if x = x(u, v), y = y(u, v).
- 48. Write the definition of the derivative in the direction of unit vector $\vec{\mathbf{u}} = \langle a, b \rangle$ and the formula connecting the directional derivative and partial derivatives.
- 49. Write the definition of the gradient vector and the formula connecting the directional derivative and gradient.
- 50. Formulate the theorem on maximizing the directional derivative.
- 51. Given surface F(x, y, z) = k, write the formula for the tangent plane at point (x_0, y_0, z_0) .
- 52. Given surface F(x, y, z) = k, what is the normal vector to the tangent plane?

- 53. Given function f(x, y), prove that the gradient vector is perpendicular to level curves of f.
- 54. Formulate the second derivative test for extremum values of function f(x, y).
- 55. Write the system of equations for the search for extremum values of function f(x, y, z) under constraints g(x, y, z) = k (Lagrange multipliers formula).
- 56. Write the definition of double integral of function f(x, y) over rectangle R.
- 57. What is the formula for the volume V of the solid that lies above the region R on the xy coordinate plane and below the surface z = f(x, y) if $f \ge 0$?
- 58. What is the average value of function f(x, y) defined on a domain R?
- 59. Formulate the Fubini theorem on rectangle $R = \{(x, y) | a \le x \le b, c \le y \le d\}.$
- 60. Express the Cartesian coordinates x and y in terms of polar coordinates r and θ .
- 61. Express polar coordinates r and θ in terms of Cartesian coordinates x and y.
- 62. What is the expression for elementary area dA in polar coordinates?
- 63. What is the formula for the coordinates of the mass center of a thin plate with plane density $\rho(x, y)$?